

ПРОГРАММА ПО МАТЕМАТИКЕ

для поступающих в Российский университет дружбы народов

Программа подготовлена на основе Федерального компонента государственного стандарта основного общего и среднего (полного) общего образования (приказ Минобразования России от 05.03.2004 № 1089).

Настоящая программа состоит из трех разделов.

В первом разделе перечислены основные математические понятия, которыми должен владеть поступающий как на устном, так и на письменном экзамене,

Второй раздел представляет собой перечень вопросов теоретической части устного экзамена. При подготовке к письменному экзамену целесообразно познакомиться с формулировками утверждений из этого раздела.

В третьем разделе указано, какие навыки и умения требуются от поступающего на письменном и устном экзаменах.

Объем знаний и степень владения материалом, описанным в программе, соответствуют курсу математики средней школы. Поступающий может пользоваться всем арсеналом средств этого курса, включая и начала анализа. Однако для решения экзаменационных задач достаточно уверенного владения лишь теми понятиями и их свойствами, которые перечислены в настоящей программе. Объекты и факты, не изучаемые в общеобразовательной школе, также могут использоваться поступающим, но при условии, что он способен их пояснять и доказывать.

В связи с обилием учебников и их регулярным переизданием отдельные утверждения второго раздела могут в некоторых учебниках называться иначе, чем в программе, или формулироваться в виде задач, или вовсе отсутствовать. Такие случаи не освобождают поступающего от необходимости знать эти утверждения.

Основные математические понятия и факты

Арифметика, алгебра и начала анализа

Натуральные числа (N). Простые и составные числа. Делитель, кратное. Наибольший общий делитель, наименьшее общее кратное.

Признаки делимости на 2, 3, 5, 9, 10.

Целые числа (Z). Рациональные числа (Q), их сложение, вычитание, умножение и деление. Сравнение рациональных чисел.

Действительные числа (R), их представление в виде десятичных дробей.

Изображение чисел па прямой. Модуль действительного числа, его геометрический смысл.

Числовые выражения. Выражения с переменными. Формулы сокращенного умножения.

Степень с натуральным и рациональным показателем. Арифметический корень.

Логарифмы, их свойства.

Одночлен и многочлен.

Многочлен с одной переменной. Корень многочлена на примере квадратного трехчлена.

Понятие функции. Способы задания функции. Область определения. Множество значений функции.

График функции. Возрастание и убывание функции; периодичность, четность, нечетность.

Достаточное условие возрастания (убывания) функции на промежутке. Понятие экстремума функции, Необходимое условие экстремума функции (теорема Ферма). Достаточное условие экстремума. Наибольшее и наименьшее значение функции на промежутке.

Определение и основные свойства функций: линейной y = kx + b, квадратичной $y = ax^2 + bx + c$, степенной $y = ax^n$ ($n \in N$), обратно-пропорциональной зависимости $y = \frac{k}{x}$, показательной $y = a^x$, a > 0, логарифмической, тригонометрических функций ($y = \sin x$; $y = \cos x$; y = tgx; y = ctgx), арифметического корня $y = \sqrt{x}$.

Уравнение. Корни уравнения. Понятие о равносильных уравнениях.

Неравенства. Решения неравенств. Понятие о равносильных неравенствах. Система уравнений и неравенств. Решения системы.

Арифметическая и геометрическая прогрессия. Формула n-го члена и суммы первых n членов арифметической прогрессии. Формула n-го члена и суммы первых n членов геометрической прогрессии.

Синус и косинус суммы и разности двух аргументов (формулы).

Преобразование в произведение сумм $\sin \alpha \pm \sin \beta$; $\cos \alpha \pm \cos \beta$.

Определение производной. Ее физический и геометрический смысл.

Производные функции $y = \sin x$; $y = \cos x$; y = tgx; $y = a^x$; $y = x^n (n \in \mathbb{Z})$.

Геометрия

Прямая, луч, отрезок, ломаная; длина отрезка. Угол, величина угла. Вертикальные и смежные углы. Окружность, круг. Параллельные прямые.

Примеры преобразования фигур, виды симметрии. Преобразование подобия и его свойства.

Векторы. Операции над векторами.

Многоугольник, его вершины, стороны, диагонали.

Треугольник. Его медиана, биссектриса, высота. Виды треугольников. Соотношения между сторонами и углами прямоугольного треугольника.

Четырехугольник: параллелограмм, прямоугольник, ромб, квадрат, трапеция.

Окружность и круг. Центр, хорда, диаметр, радиус. Касательная к окружности. Дуга окружности. Сектор.

Центральные и вписанные углы.

Формулы площади: треугольника, прямоугольника, параллелограмма, ромба, квадрата, трапеции.

Длина окружности и длина дуги окружности. Радианная мера угла. Площадь круга и площадь сектора.

Подобие. Подобные фигуры. Отношение площадей подобных фигур. Плоскость. Параллельные и пересекающиеся плоскости.

Параллельность прямой и плоскости.

Угол прямой с плоскостью. Перпендикуляр к плоскости.

Двугранные углы. Линейный угол двугранного угла. Перпендикулярность двух плоскостей

Многогранники. Их вершины, ребра, грани, диагонали. Прямая и наклонная призмы, пирамиды. Правильная призма и правильная пирамида. Параллелепипеды, их виды.

Фигуры вращения: цилиндр, конус, сфера, шар. Центр, диаметр, радиус сферы и шара. Плоскость, касательная к сфере.

Формулы площади поверхности и объема призмы.

Формулы площади поверхности и объема пирамиды.

Формулы площади поверхности и объема цилиндра.

Формулы площади поверхности и объема конуса.

Формулы объема шара.

Формулы площади сферы.

Основные формулы и теоремы

Алгебра и начала анализа

Свойства функции y = kx + b и ее график. Свойства функции $y = \frac{k}{x}$ и ее график.

Свойства функции $y = ax^2 + bx + c$ и ее график. Формула корней квадратного уравнения.

Разложение квадратного трехчлена на линейные множители.

Свойства числовых неравенств.

Логарифм произведения, степени, частного.

Определение и свойства функций $y = \sin x$ и $y = \cos x$; их графики.

Определение и свойства функции y = tgx и ее график.

Решение уравнений вида $\sin x = a; \cos x = a; tgx = a; ctgx = a$.

Формулы приведения.

Зависимости между тригонометрическими функциями одного и того же аргумента.

Тригонометрические функции двойного аргумента.

Производная суммы двух функций.

Геометрия

Свойства равнобедренного треугольника.

Свойства точек, равноудаленных от концов отрезка.

Признаки параллельности прямых.

Сумма углов треугольника. Сумма внутренних углов выпуклого многоугольника.

Признаки параллелограмма.

Окружность, описанная около треугольника.

Окружность, вписанная в треугольник.

Касательная к окружности и ее свойство.

Измерение угла, вписанного в окружность.

Признаки подобия треугольника.

Теорема Пифагора.

Формулы площадей параллелограмма, треугольника, трапеции.

Формула расстояния между двумя точками плоскости. Уравнение окружности.

Признак параллельности прямой и плоскости.

Признак параллельности плоскостей.

Теорема о перпендикулярности прямой и плоскости. Перпендикулярность двух плоскостей.

Теоремы о параллельности и перпендикулярности плоскостей.

Теорема о трех перпендикулярах.

Основные умения и навыки

Экзаменующийся должен уметь:

- производить арифметические действия над числами, заданными в виде обыкновенных и десятичных дробей: с требуемой точностью округлять данные числа и результаты вычислений; пользоваться калькуляторами или таблицами для вычислений:
- проводить тождественные преобразования многочленов, дробей, содержащих переменные, выражений, содержащих степенные, показательные, логарифмические и тригонометрические функции;
- строить графики линейной, квадратичной, степенной (в т.ч. с отрицательными показателями), показательной, логарифмической и тригонометрических функций;
- решать уравнения и неравенства первой и второй степени, уравнения и неравенства, приводящиеся к ним; решать системы уравнений и неравенств первой и второй степени и приводящиеся к ним. Сюда, в частности, относятся простейшие уравнения и неравенства, содержащие степенные, показательные, логарифмические и тригонометрические функции;
 - решать задачи на составление уравнений и систем уравнений;
- изображать геометрические фигуры на чертеже и производить простейшие построения на плоскости;
- использовать геометрические представления при решении алгебраических задач, а методы алгебры и тригонометрии при решении геометрических задач;
- проводить на плоскости операции над векторами (сложение и вычитание векторов, умножение вектора на число) и пользоваться свойствами этих операций;
- пользоваться понятием производной при исследовании функций па возрастание (убывание), на экстремумы и при построении графиков функций.

Литература

Зайцев В.В., Сканави М.И., Рыжков В.В. Элементарная математика. - М.: Наука, 1974.

Дорофеев Г.В., Потапов М.К., Розов Н.Х. Пособие по математике для поступающих в вузы - М.: Наука, 1973.

Гусев В.А., *Мордокович А.Г.* Математика. Справочные материалы. - М.: Просвещение, 1988.

Под ред. М.И. Сканави (Егоров В.К., Зайцев В.В., Кордемский Б.А. и др.). Сборник задач по математике для поступающих в вузы. - М.: Высшая школа, 1984, 1985.

Громов А.И., Савчин В.М. Методы решения задач по элементарной математике и началам анализа. - М.: РУДН, 2001.

Громов А.И., Савчин В.М. Математика для поступающих в вузы. - М.: РУДН, 2005.

ПОРЯДОК ПРОВЕДЕНИЯ ВСТУПИТЕЛЬНОГО ИСПЫТАНИЯ ПО МАТЕМАТИКЕ

Процедура проведения экзамена

- 1. На экзамен абитуриент должен прийти за 15- 20 минут до назначенного времени в определенную аудиторию, которая указана в расписании экзамена.
- 2. Необходимо иметь при себе паспорт, расписку или экзаменационный лист (при наличии) и ручку.
- 3. Документы предъявляются членам экзаменационной комиссии в открытом виде при входе в аудиторию.
- 4. После того как все абитуриенты займут в аудитории места, раздаются экзаменационные материалы.
- 5. Председатель комиссии или его заместитель объясняет правила выполнения теста, абитуриенты знакомятся с Инструкцией, заполняют титульные листы. В случае необходимости экзаменатор отвечает на вопросы абитуриентов.

- 6. Далее объявляется время начала и окончания экзамена, по истечении которого учащийся обязан сдать экзаменационную работу. Дополнительное время не предусматривается, если нет особых условий по состоянию здоровья.
- 7. Во время проведения работы нельзя пользоваться мобильными телефонами, справочной литературой, выходить из аудитории, разговаривать.
- 8. Абитуриенту разрешается задавать вопросы только по формулировке заданий, связанных с порядком их выполнения.
- 9. В случае нарушений установленных правил составляется протокол, и работа комиссией не оценивается.

Структура экзаменационной работы и критерии оценивания

Вступительный экзамен по математике проводится в форме, аналогичной ЕГЭ.

На выполнение экзаменационной работы по математике отводится 3,5 часа (210 минут). В работе используются два типа заданий: с кратким ответом в виде некоторого целого числа или десятичной дроби, с развернутым ответом, требующим записи решения поставленной задачи.

- **Часть** 1. Задания с кратким ответом (**B1 B12**) оцениваются по 4 балла.
- **Часть 2**. Задания с развернутым ответом (C1 C6): задания C1, C2 оцениваются по 6 баллов, задания C3 C6 по 10 баллов.

Таким образом, за верное выполнение всех заданий работы можно максимально получить 100 баллов.

Задание с кратким ответом (в виде некоторого целого числа или конечной десятичной дроби) считается выполненным верно, если в «Бланке ответов N = 1» записано именно это число.

За задания с развернутым ответом оценка выставляется в зависимости от полноты и правильности ответа.

Советуем выполнять задания в том порядке, в котором они даны. Для экономии времени пропускайте задание, которое не удается выполнить сразу, и переходите к следующему. Если после выполнения всей работы у вас останется время, то можно вернуться к пропущенным заданиям.

Баллы, полученные вами за все выполненные задания, суммируются. Постарайтесь выполнить как можно больше заданий и набрать как можно большее количество баллов.